Variational Gaussian process classifiers

نویسندگان

  • Mark N. Gibbs
  • David J. C. MacKay
چکیده

Gaussian processes are a promising nonlinear regression tool, but it is not straightforward to solve classification problems with them. In this paper the variational methods of Jaakkola and Jordan are applied to Gaussian processes to produce an efficient Bayesian binary classifier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Gaussian Process Classification via Expectation Propagation

Variational methods have been recently considered for scaling the training process of Gaussian process classifiers to large datasets. As an alternative, we describe here how to train these classifiers efficiently using expectation propagation (EP). The proposed EP method allows to train Gaussian process classifiers on very large datasets, with millions of instances, that were out of the reach o...

متن کامل

Stochastic Expectation Propagation for Large Scale Gaussian Process Classification

A method for large scale Gaussian process classification has been recently proposed based on expectation propagation (EP). Such a method allows Gaussian process classifiers to be trained on very large datasets that were out of the reach of previous deployments of EP and has been shown to be competitive with related techniques based on stochastic variational inference. Nevertheless, the memory r...

متن کامل

Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers

We present a variational Bayesian method for model selection over families of kernels classifiers like Support Vector machines or Gaussian processes. The algorithm needs no user interaction and is able to adapt a large number of kernel parameters to given data without having to sacrifice training cases for validation. This opens the possibility to use sophisticated families of kernels in situat...

متن کامل

Covariance Kernels from Bayesian Generative Models

We propose the framework of mutual information kernels for learning covariance kernels, as used in Support Vector machines and Gaussian process classifiers, from unlabeled task data using Bayesian techniques. We describe an implementation of this framework which uses variational Bayesian mixtures of factor analyzers in order to attack classification problems in high-dimensional spaces where lab...

متن کامل

On numerical approximation schemes for expectation propagation

Several numerical approximation strategies for the expectation-propagation algorithm are studied in the context of large-scale learning: the Laplace method, a faster variant of it, Gaussian quadrature, and a deterministic version of variational sampling (i.e., combining quadrature with variational approximation). Experiments in training linear binary classifiers show that the expectation-propag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2000